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NEIGHBORHOOD CLASSIFICATION OF
ISOTROPIC EMBEDDINGS

ALAN WEINSTEIN

1. The problem

If M is any manifold, and (P, ) is a symplectic manifold, then an isotropic
embedding of M in P is an embedding e: M — P such that ¢*Q = 0. (We
refer the reader to [1], [3], or [6] for definitions and proofs omitted in this
note.) A neighborhood eguivalence from e;: M; — P, to e,: M, — P, consists
of

(i) a diffeomorphism g: M, —» M,,

(i1) open neighborhoods U, of ¢(AM)) in P,,

(iii) a symplectomorphism f: U; — U, such that fc e, = ¢, ° g.

We write f: e; —> e,. The isotropic embeddings and neighborhood equiva-
lences form a category &.

The symplectic normal bundle SN(e) of an isotropic embedding e: M — P
is a symplectic vector bundle over M whose fibre over m € M is formed as
follows. The image (7e)(7,M) is an isotropic subspace of T,,,P; the
symplectic orthogonal space [( Te)(T,,M)]* contains (7e) T,,M); the quotient
of the two, which is symplectic, is the fibre of SN(e). Every neighborhood
equivalence f: e; —> e, induces a symplectic bundle isomorphism SN(f) from
SN(e,) to SN(e,) covering a diffeomorphism from M, to M,; we thus obtain
a functor SN from & to the category & of symplectic vector bundles and
bundle isomorphisms covering diffeomorphisms.

It is shown in [6] that the functor SN is sugjective in the sense that every
bundle isomorphism from SN(e,) to SN(e,) is SN(f) for some neighborhood
equivalence f: e; — e,; it is also shown that every symplectic vector bundle is
isomorphic to SN(e) for some isotropic embedding e. Thus there is a
one-to-one correspondence between neighborhood equivalence classes of
isotropic embeddings and isomorphism classes of symplectic vector bundles.

The constructions in [6] leave something to be desired: the manifold into
which M is embedded with a given symplectic normal bundle F is the
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Whitney sum P = T*M & E, but the symplectic structure on P is not
canonical, so bundle isomorphisms do not appear to lift to neighborhood
equivalences. The purpose of this note is to improve the construction in [6] by
finding a “symplectic thickening” functor S7: & — & which is a right inverse
to SN in the sense that there is a natural transformation from ST o SN to the
identity. To do so, we will use the construction in [7] of a phase space for a
classical particle in a Yang-Mills field.

The author would like to thank J. Marsden and T. Ratiu for a conversation
which stimulated this work.

2, The solution

Let £ — M be a symplectic vector bundle with fibre dimension 2n. The
frame bundle of E is the principal Sp(2n) bundle B — M whose fibre over m
is the manifold of linear symplectomorphisms from R?" to the fibre of E over
m. The bundle associated to B — M via the usual representation of Sp(2n) on
R?" is just the original vector bundle E — M.

The action of Sp(2n) on R** preserves not only the symplectic structure
Q = 37_, dg; A\ dp; but also the 1-form w =1327_ (p;dg; — gdp;) for which
dw = -£. It follows that the action admits an equivariant momentum map-
ping u from R?" to the dual Lie algebra 8p(2n)*; the mapping p is quadratic
with 5~(0) = (0}.

Given any principal G-bundle over a manifold M, and any symplectic
G-manifold Q with an equivariant momentum mapping, the construction
described in [7] produces a symplectic manifold P which can be fibred over
T*M with fibre Q. This fibration is associated to the pullback of the principal
bundle from M to 7T*M. The map P — T*M depends on the choice of a
connection on the principal bundle, but the symplectic manifold P and the
map P — M do not.

Applying this construction with G = Sp(2n) and Q = R?*", we obtain a
symplectic manifold P which can be fibred over T*M with fibre R*". This
fibration is just the pullback of £ to T*M, which is the-same thing as the
Whitney sum T*M @ E.

Now we must find as natural isotropic embedding from M to P. The idea is
to construct a natural “zero section” from 7*M to P, even though the map
P —>T*M is not well-defined. To do so, we must look at the explicit
construction of P.
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According to [7], we must take the product symplectic manifold 7*B X
R?", with its Sp(2n) action, and “reduce at 0 € 8p(2n)*, following the proce-
dure of [4]. Specifically, we consider the momentum mapping A: T*B —
8p(2n)* which is dual to the usual mappings &p(2n) — T, B onto the tangent
spaces along the fibres of the principal bundle. Next, we take the submanifold
S ={(B,v) € T*B X R*"]A(B) = w(v)). Finally, P is the orbit space
=/ Sp(2n).

To get a map P — T*M, we would need an Sp(2n)-equivariant projection
from T*B to T*M, which is essentially a connection on B —» M. But let us
restrict our attention to A~!(0), which consists of those cotangent vectors to B
which annihilate the fibres of B — M. This set A7'(0) is naturally isomorphic
to the pullback of T*M to B. Now £ contains as a submanifold A~'(0) X
p'(0) = A7'(0) X {0}, which gives in P a submanifold [A7/(0) X {0}]/Sp(2n)
~ A7Y(0)/Sp(2n), which may be identified with T*M itself. Thus the zero
section M — T*M gives an embedding e: M — P.

Finally, one may check by using local trivializations of E that
A~'(0)/ Sp(2n) is a symplectic submanifold of P and that the tangent bundle
to P along e(M) splits symplectically as the Whitney sum 7*M & E. It
follows that e is an isotropic embedding and that there is a natural isomor-
phism n(E) from SN(e) to E. Thus if we set ST(E) = ¢, we find that n is a
natural transformation from SN o ST to the identity.

3. A remark

With the benefit of hindsight, we may see that the construction just
described could have been “predicted” from Guillemin’s symbol calculus [2]
for isotropic submanifolds of cotangent bundles, The quantization of P (see
[3], [7], and the “dictionary” in [5]) consists of the sections of the bundle over
M which is associated with the frame bundle of E, and whose typical fibre is
a quantization of R?". (We will ignore half-densities and half-forms in this
remark.) A quantization of R?" is given by the space of rapidly decreasing
smooth functions on R”, with the metaplectic representation. Thus, at least if
E admits a metaplectic structure, the quantization of P is just a space of
symplectié spinors as used in [2). '
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