NEIGHBORHOOD CLASSIFICATION OF ISOTROPIC EMBEDDINGS

ALAN WEINSTEIN

1. The problem

If M is any manifold, and (P, Ω) is a symplectic manifold, then an *isotropic* embedding of M in P is an embedding $e: M \to P$ such that $e^*\Omega = 0$. (We refer the reader to [1], [3], or [6] for definitions and proofs omitted in this note.) A neighborhood equivalence from $e_1: M_1 \to P_1$ to $e_2: M_2 \to P_2$ consists of

- (i) a diffeomorphism $g: M_1 \to M_2$,
- (ii) open neighborhoods U_i of $e_i(M_i)$ in P_i ,
- (iii) a symplectomorphism $f: U_1 \to U_2$ such that $f \circ e_1 = e_2 \circ g$.

We write $f: e_1 \to e_2$. The isotropic embeddings and neighborhood equivalences form a category \mathcal{E} .

The symplectic normal bundle SN(e) of an isotropic embedding $e: M \to P$ is a symplectic vector bundle over M whose fibre over $m \in M$ is formed as follows. The image $(Te)(T_mM)$ is an isotropic subspace of $T_{e(m)}P$; the symplectic orthogonal space $[(Te)(T_mM)]^{\perp}$ contains $(Te)(T_mM)$; the quotient of the two, which is symplectic, is the fibre of SN(e). Every neighborhood equivalence $f: e_1 \to e_2$ induces a symplectic bundle isomorphism SN(f) from $SN(e_1)$ to $SN(e_2)$ covering a diffeomorphism from M_1 to M_2 ; we thus obtain a functor SN from S to the category S of symplectic vector bundles and bundle isomorphisms covering diffeomorphisms.

It is shown in [6] that the functor SN is surjective in the sense that every bundle isomorphism from $SN(e_1)$ to $SN(e_2)$ is SN(f) for some neighborhood equivalence $f: e_1 \rightarrow e_2$; it is also shown that every symplectic vector bundle is isomorphic to SN(e) for some isotropic embedding e. Thus there is a one-to-one correspondence between neighborhood equivalence classes of isotropic embeddings and isomorphism classes of symplectic vector bundles.

The constructions in [6] leave something to be desired: the manifold into which M is embedded with a given symplectic normal bundle E is the

Communicated by R. Bott, December 17, 1979. Research supported by NSF Grant #MCS 77-23579.

Whitney sum $P = T^*M \oplus E$, but the symplectic structure on P is not canonical, so bundle isomorphisms do not appear to lift to neighborhood equivalences. The purpose of this note is to improve the construction in [6] by finding a "symplectic thickening" functor $St: S \to S$ which is a right inverse to SN in the sense that there is a natural transformation from $ST \circ SN$ to the identity. To do so, we will use the construction in [7] of a phase space for a classical particle in a Yang-Mills field.

The author would like to thank J. Marsden and T. Ratiu for a conversation which stimulated this work.

2. The solution

Let $E \to M$ be a symplectic vector bundle with fibre dimension 2n. The frame bundle of E is the principal Sp(2n) bundle $B \to M$ whose fibre over m is the manifold of linear symplectomorphisms from \mathbb{R}^{2n} to the fibre of E over m. The bundle associated to $B \to M$ via the usual representation of Sp(2n) on \mathbb{R}^{2n} is just the original vector bundle $E \to M$.

The action of Sp(2n) on \mathbb{R}^{2n} preserves not only the symplectic structure $\Omega = \sum_{i=1}^{n} dq_i \wedge dp_i$ but also the 1-form $\omega = \frac{1}{2} \sum_{i=1}^{n} (p_i dq_i - q_i dp_i)$ for which $d\omega = -\Omega$. It follows that the action admits an equivariant momentum mapping μ from \mathbb{R}^{2n} to the dual Lie algebra $\mathfrak{Sp}(2n)^*$; the mapping μ is quadratic with $\mu^{-1}(0) = \{0\}$.

Given any principal G-bundle over a manifold M, and any symplectic G-manifold Q with an equivariant momentum mapping, the construction described in [7] produces a symplectic manifold P which can be fibred over T^*M with fibre Q. This fibration is associated to the pullback of the principal bundle from M to T^*M . The map $P \to T^*M$ depends on the choice of a connection on the principal bundle, but the symplectic manifold P and the map $P \to M$ do not.

Applying this construction with G = Sp(2n) and $Q = \mathbb{R}^{2n}$, we obtain a symplectic manifold P which can be fibred over T^*M with fibre \mathbb{R}^{2n} . This fibration is just the pullback of E to T^*M , which is the same thing as the Whitney sum $T^*M \oplus E$.

Now we must find as natural isotropic embedding from M to P. The idea is to construct a natural "zero section" from T^*M to P, even though the map $P \to T^*M$ is not well-defined. To do so, we must look at the explicit construction of P.

According to [7], we must take the product symplectic manifold $T^*B \times \mathbb{R}^{2n}$, with its Sp(2n) action, and "reduce at $0 \in \mathfrak{Sp}(2n)^*$, following the procedure of [4]. Specifically, we consider the momentum mapping $\lambda \colon T^*B \to \mathfrak{Sp}(2n)^*$ which is dual to the usual mappings $\mathfrak{Sp}(2n) \to T_bB$ onto the tangent spaces along the fibres of the principal bundle. Next, we take the submanifold $\Sigma = \{(\beta, v) \in T^*B \times \mathbb{R}^{2n} | \lambda(\beta) = \mu(v) \}$. Finally, P is the orbit space $\Sigma/Sp(2n)$.

To get a map $P \to T^*M$, we would need an Sp(2n)-equivariant projection from T^*B to T^*M , which is essentially a connection on $B \to M$. But let us restrict our attention to $\lambda^{-1}(0)$, which consists of those cotangent vectors to B which annihilate the fibres of $B \to M$. This set $\lambda^{-1}(0)$ is naturally isomorphic to the pullback of T^*M to B. Now Σ contains as a submanifold $\lambda^{-1}(0) \times \mu^{-1}(0) = \lambda^{-1}(0) \times \{0\}$, which gives in P a submanifold $[\lambda^{-1}(0) \times \{0\}]/Sp(2n) \approx \lambda^{-1}(0)/Sp(2n)$, which may be identified with T^*M itself. Thus the zero section $M \to T^*M$ gives an embedding $e: M \to P$.

Finally, one may check by using local trivializations of E that $\lambda^{-1}(0)/Sp(2n)$ is a symplectic submanifold of P and that the tangent bundle to P along e(M) splits symplectically as the Whitney sum $T^*M \oplus E$. It follows that e is an isotropic embedding and that there is a natural isomorphism n(E) from SN(e) to E. Thus if we set ST(E) = e, we find that n is a natural transformation from $SN \circ ST$ to the identity.

3. A remark

With the benefit of hindsight, we may see that the construction just described could have been "predicted" from Guillemin's symbol calculus [2] for isotropic submanifolds of cotangent bundles. The quantization of P (see [3], [7], and the "dictionary" in [5]) consists of the sections of the bundle over M which is associated with the frame bundle of E, and whose typical fibre is a quantization of \mathbb{R}^{2n} . (We will ignore half-densities and half-forms in this remark.) A quantization of \mathbb{R}^{2n} is given by the space of rapidly decreasing smooth functions on \mathbb{R}^n , with the metaplectic representation. Thus, at least if E admits a metaplectic structure, the quantization of P is just a space of symplectic spinors as used in [2].

References

- R. Abraham & J. Marsden, Foundations of mechanics, 2nd edition, Benjamin/Cummings, Reading, MA, 1978.
- [2], V. Guillemin, Symplectic spinors and partial differential equations, Géom. Symplectique et Phys. Math. Colloq. Interna-C.N.R.S. 237 (1975) 217-252.
- [3] V. W. Guillemin & S. Sternberg, Geometric asymptotics, Amer. Math. Soc. 1976.

- [4] J. Marsden & A. Weinstein, Reduction of symplectic manifolds with symmetry, Rep. Mathematical Phys. 5 (1974) 121-130.
- [5] _____, Review of Geometric asymptotics by V. Guillemin & S. Sternberg and Symplectic geometry and Fourier analysis by N. Wallach, Bull. Amer. Math. Soc. 1 (1979) 545-553.
- [6] A. Weinstein, Lectures on symplectic manifolds, Regional Conf. Math. Vol. 29, Amer. Math. Soc. 1977.
- [7] _____, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978) 417-420.

University of California, Berkeley